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Abstract
Image metrics predict the perceived per-pixel difference between a reference image and its degraded (e. g., re-rendered) version.
In several important applications, the reference image is not available and image metrics cannot be applied. We devise a neural
network architecture and training procedure that allows predicting the MSE, SSIM or VGG16 image difference from the distorted
image alone while the reference is not observed. This is enabled by two insights: The first is to inject sufficiently many un-distorted
natural image patches, which can be found in arbitrary amounts and are known to have no perceivable difference to themselves.
This avoids false positives. The second is to balance the learning, where it is carefully made sure that all image errors are equally
likely, avoiding false negatives. Surprisingly, we observe, that the resulting no-reference metric, subjectively, can even perform
better than the reference-based one, as it had to become robust against mis-alignments. We evaluate the effectiveness of our
approach in an image-based rendering context, both quantitatively and qualitatively. Finally, we demonstrate two applications
which reduce light field capture time and provide guidance for interactive depth adjustment.

1. Introduction

Computer vision or graphics experts easily recognize image artifacts
that might be highly domain-specific. An image-based rendering
(IBR) specialist will quickly notice where depth estimation failed,
where transparency was not handled or where a highlight did not
move correctly. Similarly, in computer graphics, artifacts resulting
from Monte Carlo noise in image synthesis when producing a fea-
ture film, or shadow bias [Wil78] in a computer game are easily
spotted by domain experts. The assessment typically is not limited
to detection, but importantly includes judging magnitude as well as
spatial locality. The importance of interacting with errors can be seen
from photographs with spatially annotated over- and under-expose
artifacts, as done for instance by Henri Cartier-Bresson [Col12].
Remarkably, all this is not achieved by comparing an image to a
reference, but by experience and intuition built from knowing what
natural images look like and how images with artifacts differ. Can
we enable a machine to also perform such a task?

More formally, we face the challenge illustrated in Fig. 1. Given
an image A that is a distorted version of a reference B we wish
to predict their difference A	B without access to B. The lower
right image shows the ground truth metric response A	B. This
metric could simply be the mean square error (MSE as used in
Fig. 1), a more perceptual metric like SSIM [WBSS04] or even
VGG-16 activation differences that are effective as an image metric
[SZ14, ZIE∗18]. More particularly, we go beyond the typical mean
opinion scores [TM18] given to uniform distortions such as noise

Image A (IBR) Image B (Reference)

           A    B (Ground truth)     A     B (Our prediction)

Figure 1: Given an imageA (top left) that is a version of a reference
B (top right) distorted by IBR artifacts, we predict their per-pixel
difference map A	B (lower left) without observing B. The lower
right shows the ground truth difference A	B. We here show MSE,
but other metrics such as SSIM or VGG16 are also possible.

or JPEG compression, and seek to produce localized distortion
visibility maps without accessing the reference.

In this paper, we choose to study one specific form of artifacts
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that arise in image-based rendering (IBR) [MB95, GGSC96], in
particular, when employed for novel-view synthesis from sparse
light fields (LFs) [LH96]. It is important in virtual reality and movie
production where LFs are used to provide head motion parallax and
special effects. Moreover, having a localized error prediction is also
important for quality control. In IBR, artifacts are very localized
(e. g., around certain depth edges) and creating opinion scoring
or even spatio-angular annotated dataset of LF artifacts in a size
sufficient for machine learning appears to be a daunting task. Our
method proceeds without all of this.

Addressing this challenge, we make use of convolutional neural
networks. We will show, how learning this mapping right away
will result in many false positives or false negatives. Instead, two
important ingredients come together in our approach. First, as the
number of images containing artifacts is typically limited, we need
to augment the training data with natural images that are free from
artifacts. Second, we propose a way to find the right balance between
natural and distorted training data.

Not requiring a reference is useful whenever the original is in-
accessible (lost, impossible to compute, unavailable, undefined).
Furthermore, we demonstrate one application of a non-reference
metric in light field capturing. We first capture a sparse light field,
followed of by an interpolation of the intermediate views. If our
our metric indicate those intermediate views have errors, they views
will be recaptured. This allows acquiring higher-quality light field
in much shorter time compared to dense LF capturing.

2. Previous Work

In this section, we discuss objective image quality metrics, with spe-
cial emphasis on those that do not require the undistorted reference
image. Then, we briefly characterize IBR-specific artifacts, as well
as metrics specialized in their detection, which is the key focus of
this work.

Image metrics Some application and functions may require qual-
ity while others need visibility metrics [Cha13].

Image quality metrics (IQMs) evaluate the distortion magnitude
and are typically trained on the mean-opinion score (MOS) data
[SSB06, PLZ∗09] that labels the entire image with as a single qual-
ity score. The most commonly used IQMs such as PSNR, SSIM,
MS-SSIM [WB06], FSIM [ZZMZ11], and CIELAB [ZW97] are
full-reference (FR) metrics that take as input the reference and dis-
torted images, and compute local differences that are pooled into
a global, single quality score. Recently, it has been demonstrated
that CNN-based FR-IQMs achieved best performance in predicting
MOS data [APY16, BMM∗18]. Zhang et al. [ZIE∗18] employed
crowdsourcing and created a large scale patch-based dataset in two
perceptual experiments: (1) two-alternative forced choice (2AFC) on
distortion strength, and (2) “same/not same" near-threshold distor-
tion visibility. They train different network architectures and report
in each case a much better performance than traditional FR-IQMs
in predicting their data from both experiments.

Visibility metrics (VMs) predict the distortion perceptibility for
every pixel in the form of visibility maps. VMs are specifically tuned
for detecting near-threshold distortions, which is required in many

graphics and vision applications that cannot tolerate any perceivable
quality reduction and require local information on the distortion po-
sitions. To decide on the visibility of such near-threshold distortions,
models of human vision are often employed, where the most promi-
nent FR-VMs examples include: VDM [Lub95], VDP [Dal92], and
HDR-VDP-2 [MKRH11]. In the specific task of predicting selected
rendering and compression artifacts, best performance has been
achieved using machine learning [ČHM∗13] and CNN-based tech-
niques [WGY∗18, PL18].

No-reference metrics In this work, we focus on the VMs due
to the locality of their prediction, but we are specifically inter-
ested in more challenging no-reference setup, where the refer-
ence image is not available. We discuss the most successful and
recent NR-IQMs that rely on machine learning techniques, and
we also refer the interested reader to more comprehensive met-
ric surveys in [Cha13, KZG∗17]. Early machine learning tech-
niques employed predefined features such as SIFT and HOG
[NL10, MB10, SBC12, TJK11], and measured their distortions
with respect to natural image statistics [WB06]. Recently, CNN ar-
chitectures are applied to such feature learning as well as the MOS re-
gression at the same time [BCNS16, KYLD14, BMM∗18, TM18].
To compensate for a low number of MOS-labeled images, such so-
lutions typically rely on patches, where they assign the same MOS
score for all patches that belong to a given image [KZG∗17]. Such
practice is justified for specific classes of distortions that affect the
whole image uniformly, which might be the case for certain types of
image noise or compression artifacts, but might confuse the network
in case of localized distortions such as those occurring in IBR.

To compensate for the lack of true local reference images,
Bosse et al. [BMM∗18] learn the importance of local patches, but
their key motivation is not in deriving the localized VM, but rather
in estimating relative patch weights in the aggregated MOS rating.
Lin and Wang [LW18] employ a quality-aware generative network
to hallucinate the reference image, which by employing adversarial
learning is further refined by an IQM-discriminator that is trained on
ground truth references. Their hallucination-guided quality regres-
sion network is fed with the difference between the hallucinated and
distorted images, as well as the distorted image itself to predict the
MOS value. The quality-aware generative network, hallucination-
guided quality regression network, and the IQM-discriminator are
jointly optimized in an end-to-end manner. Kim and Lee [KL17]
apply state-of-the-art FR-IQMs such as SSIM to generate proxy
scores on patches as the ground truth to pre-train the model and then
fine-tune their target NR-IQM. At intermediate stages the regres-
sion network considers mean values and the standard deviations of
per-patch 100-element feature vectors which are then pooled to a
per-image quality score.

In this work, we also employ state-of-the-art FR-IQMs to perform
an initial per-patch distortion annotation, and strike the required bal-
ance between different error magnitudes in the training data, which
is essential for meaningful training and shift-invariant properties of
our NR-VM.

The research on NR-VMs is extremely sparse, pre-
sumably due to limited access to locally labeled images
[HČA∗12, ČHM∗13, WGY∗18]. A notable exception is the work
of Herzog et al. [HČA∗12] who employs support vector machine
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(SVM) to predict per-pixel distortions for selected rendering
artifacts (they do not consider IBR) and achieve performance
comparable to FR-VMs. Here, we demonstrate that time-consuming
manual per-pixel distortion labeling is not strictly required.

In cases where training data is both easy to produce–such as uni-
form distortions like noise, JPEG, etc.–and no perceptual calibration
is required, supervised training has been employed to detect aliasing
artifacts [PL18]. Our work differs, as we only have very limited
training data available, both because only very few ground truth
images are available for IBR and we need perceptual calibration.
Learning from little data is part of our balancing contribution.

Vogels and colleagues [VRM∗18] have proposed a method to
denoise path traced images. To steer the amount of denoising, they
also trained a neural network to predict distortion in terms of MC
variance, which is as unknown as the pixel value to be MC-estimated
itself. Interestingly, in both their work and ours, a NR metric is used
to steer adaptation: for them it is a denoising algorithm; for us, one
application is controlling capture hardware. Their task is different
as they predict SSIM error from a pair of images, where one is
noisy and the other is denoised. This restricts the distortions to the
difference between denoised and reference, which are smaller than
IBR artifacts and also does not need to be perceptually calibrated.
The fact that images with MC noise can be generated in arbitrary
amounts also underlines what is the focus of our work: coping with
limited training data.

Image-based rendering for structured or unstructured light
fields (LFs) of real-world scenes involves a number of compu-
tational steps such as: depth reconstruction, neighboring view-
image warping, warped view-image blending, and disocclusion
hole in-painting. Each of these steps is prone to inaccuracies
that manifest themselves as IBR-specific artifacts such as object
shifting (incorrect depth), crumbling, distorted edges (depth dis-
continuities, e. g., due to compression), popping (fluctuations in
depth), ghosting (depth inaccuracy, view blending), stretching,
blurry or black regions (in-painting) [TZMD18]. Specialized IBR
quality metrics often rely on leaving one view out as the refer-
ence [WBF∗17, CRM12, SAB11, BPC∗11] or searching for match-
ing image blocks after their registration [BBC∗15, GJQ∗17], and
then employing customized FR-IQMs. NR-IQMs typically focus
on detecting selected distortion types such as blurring and ghost-
ing [BLL∗10], ghosting and popping [GSGC16], blurring, stretch-
ing and black holes [TZMD18], and aggregation into one final
scalar score. Perceptual experiments have been performed to under-
stand how the observers rate the severity of different artifacts as a
function of rendering parameters such as the number of blended
views and viewing angles [VCL∗11]. A skillful pre-processing of
depth (e. g., depth blurring in uncertain regions) and choice of par-
ticular algorithmic solutions can substantially suppress artifacts
[HRDB16, SKC∗19], eventually using a neural network trained to
predict blending weights to combine the warped images[HPP∗18].
More objectionable distortion types can be traded-off with those
that are more visually appealing (e. g., blurry depth that is more
consistent but further from the ground truth). Instead of focusing
on selected distortion types, Ling et al [LLC18] proposes to learn a
dictionary based on manually labeled data. The features extracted
from an image allows to predict a MOS value using support vec-

tor machine regression. As data labeling can be time consuming,
as Ling et al. [LLWC19] create artificial training data that aims to
simulate occlusion problems. A Generative Adversarial Network
(GAN) discriminator [GPAM∗14], targeted to identify in-painted
image regions, is used to predict a quality score.

All the discussed work on IBR quality evaluation essentially fo-
cuses on providing a single score per-image, which then also serves
as a metric for performance evaluation. While some FR-IQMs gener-
ate viable per-pixel VMs at intermediate stages [CRM12, SAB11],
their accuracy is not formally evaluated. The same holds for the
NR-IQM [LLC18]. Our work hence differs from all previous work
by pursing the NR-VM setup to detect local IBR distortions using
CNN-based techniques.

3. Learning a No-reference Metric

Overview Test-time input to our method is a single distorted RGB
image A. While our distortions are always IBR artifacts resulting
from a specific depth reconstruction and specific IBR method, the
interna of how this image is generated (e. g., the depth map) are
transparent, and we only need access to the result. Withheld is
the reference RGB image B. In the case of IBR, such a distorted-
undistorted pair is typically produced by rendering a known image
from other known views.

Output of our proposed method is a single-channel (scalar) image
that predicts a given difference metric response A	B, where the
	 operator depends on the choice of the specific metric, e. g., MSE,
SSIM [WBSS04], or VGG16 [SZ14]. High values are produced
where the images are different and small values where they are
similar. This output is accurate, if it has little false positives or nega-
tives. False positives correspond to predicting a perceived difference
where there are no artifacts and false negatives correspond to visible
artifacts the metric fails to report.

Note that two forms of approximations are made here: the first is
the error that the metric itself makes when comparing two images
relative to human judgment. The second is the error that our method
has, with respect to a prediction. Ultimately, our method is a pre-
diction of a prediction, but surprisingly can perform better than one
prediction alone.

3.1. Training data

Our training data comprises existing metric responses A	B to
the distorted image A and the clean reference image B. Strictly
speaking, learning does not even observe the reference image B, but
in practice, it is required to compute the metric response A	B.

For creating our training dataset, we used captured LF images of
42 different scenes, which come from the Stanford LF repository
[sta], the Fraunhofer IIS light field dataset [DZD∗16], Google Re-
search work [PZ17], and Technicolor [SBV∗17] as well as from our
own captured images. All 4D LF datasets comprise conventional 2D
images in a resolution up to 2k×2k, taken from a range of sparse
view points, such as in a 3×3 camera array with known camera
positions. For each LF view point, we first estimate the depth using
a light field depth estimation technique [DZD∗16] and then warp
[MMB97] the image into all other views. For each LF, we use the
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four corner views to generate novel-view images at the positions of
the remaining views. Each warped view corresponds to one original
view, and we compute the response of a full-reference metric to this
pair. With approx. 9 views per LF and 42 LFs in total, this amounts
to only 210 unique images, i. e., a comparatively low number for a
training task.

We use six scenes for testing and the rest for training. The same
split is also applied later for the user study. Our test scenes are totally
different from the training scenes, which is important as the number
of scenes in the training set is small and generalization across them
is an additional challenge.

The natural images used in our training and test dataset are
sourced from the Inria Holidays image dataset [JDS08] which have
a comparable resolution to our LF images.

Our method is independent of the actual underlying metric 	 we
predict. We will denote this response neutrally as A	B. We ex-
plored three metrics: MSE, SSIM and VGG16. MSE is defined as the
average per-pixel RGB difference vector length squared. The SSIM
metric is using the original implementation [WBSS04]. VGG16
[ZIE∗18] transforms both A and B into the VGG16 feature space
and picks the activations at layer five, which is 512-dimensional.
The L2 difference of these two vectors is used as the metric response.
For each metric, we normalize the 95th percentile of their responses
across the training dataset to fall between 0 and 1.

3.2. Architecture

We use a simple encode P [RPB15] that has learnable parameters Θ

and predicts the error map P(A|Θ) by observing A (Fig. 2).
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Figure 2: Our architecture consumes 32× 32 patches, (yellow
left), and applies a cascade of 3× 3 convolutions, followed by
non-linearities (ReLU). Spatial resolution is reduced (height) and
feature count increases (width) before a final prediction of the metric
response is produced (blue, right).

The network comprises 5 layers (32× 32 patch size) with the
total number of |Θ|= 175,537 learnable parameters and is trained
on all patches of the training set in a sliding window fashion.

The loss is the L1 error of the predicted metric response, so
||P(A|Θ)− (A	B)||1. Note that the loss is always L1, while the
metric can be the L-norm-like MSE as well as SSIM or VGG16.

Balancing We have explained why, and will see from the ablation
study, that it is important to have natural patches, but the question is
how many. If we take an unlimited number, the metric prediction
simply always returns zero, because natural patches have no error to
themselves.

Our solution is to start with a half-half mix of distorted and clean
patches. Regrettably, many of the distorted patches, which make
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Figure 3: When sampling uniformly from IBR patches the error
distribution is skewed towards low errors (blue). Our balancing (red)
adjusts the samples to have a uniform range of errors. The three
lower plots show the actual distribution before and after balancing
for different metric responses.

50 % of the total, also have small errors that are close to zero. These
patches are exactly those for which IBR was successful, i. e., did
not have any artifacts. Depending on the metric, this imbalance can
be very strong, and in particular for MSE, it is extremely heavy-
tailed (Fig. 3). To address this, we balance the error distribution
for the distorted half when creating the training data as follows:
First, we sort all patches by their metric response into a priority
queue. Then, we uniformly random-sample the range from zero to
the 95th percentile of the metric response distribution. For every
sample i with value ξi, we find the patch j with the most similar
metric response di and remove it from the queue and add it to the
training dataset. When the minimum difference ξi−d j is larger than
a threshold ε, we reject the sample. This is repeated until a target
patch count, such as 250 k, is reached.

4. Evaluation

4.1. Methods

Training Strategies We compare three different strategies for train-
ing. The first is ours, the other two are ablations. FULL is our com-
plete method involving 50 % natural patches and a balancing of the
other 50 % as described in Sec. 3.2. NOBALANCE is realized by
a similar 50/50-split, but we train on all distorted patches without
the balancing. NONATURAL adapts the balancing to take 100 % of
the patches coming from IBR without adding the natural patches as
described in Sec. 3.2. All training sets, albeit processed differently,
have the same size of ca. .5 M patches.

Error As we predict metric responses, our error is the same as
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the loss, the absolute difference between the ground truth metric
response and our prediction of that response. As these errors also
come in arbitrarily different scales for different metrics, we normal-
ize them per metric by dividing by the global 95th percentile of the
GT metric response across the balanced training dataset.

We additionally report errors in metric prediction errors for a split
subsets to understand the false/true-positive and false/true-negative
tendency. In ALL, we compute the error for the whole test dataset.
Additionally, we consider two subsets of the test dataset. The first
subset is CLEAN, which includes only natural patches. The second
one is DISTORTED that contains only IBR patches, including those
that might also come out with very low or even with no error. Please
note that this is a partitioning of the test set, and not of the training
set.

4.2. Quantitative results

In this section, we discuss both the means and full error distributions
of all training strategies for different partitions and different metrics.

Table 1: Error of the metric predictions on the test data
for different variants of our algorithms and different partitions
(ALL/CLEAN/DISTORTED) of the training data (columns) on differ-
ent metrics (rows). Winners per-partition are marked bold.

Metric
FULL NONATURAL NOBALANCE

ALL CLE. DIST. ALL CLE. DIST. ALL CLE. DIST.

MSE .098 .006 .189 .137 .092 .182 .102 .003 .201
SSIM .078 .013 .143 .143 .159 .127 .080 .012 .149
VGG .085 .006 .165 .207 .293 .121 .092 .008 .176

Means The means of all methods are compared in Tbl. 1. We
see that our method (FULL) has the smallest error across different
metrics compared to both other variants (bold in column ALL).

In detail, when we look into the partitioning, we find that for
the DISTORTED partition, the NONATURAL strategy performs best.
This is expected as training is done with all distorted patches which
comprise the maximal variety of distortion. This makes the resulting
metric sensitive for all kinds of distortions. As a result, the probabil-
ity of false negatives, i. e., claiming patches with an error to be fine,
becomes low.

We also find, that for the CLEAN partition, the NOBALANCE

strategy performs best. This also is expected as in the training,
50 % of data comprises natural (undistorted) patches, and due to
the NOBALANCE strategy, small errors dominate in the distorted
patches. This makes the resulting metric particularly sensitive for
near-threshold distortions. In this case, the probability of false posi-
tives, i. e., reporting a high metric response for no-error patches, is
low.

All statements are true (significant, p < .01, t-test after testing for
Gaussianity) across all metrics, indicating that the FULL approach is
independent of the underlying metric. A positive exception is VGG,
where the FULL approach even performs better than NOBALANCE

on the CLEAN partition.

Distributions In Fig. 4, we show the distribution of errors for dif-
ferent metric predictions (top) and the correlation of the prediction
error and metric response (bottom). In each plot, colors encode the
variants of our approach (NONATURAL, NOBALANCE, FULL).

MSE SSIM VGG

MSE SSIM VGG

Metric response

Rank Rank Rank

1

1

1
0

1

00

1

1
0

1

0

1

1

1 1 1

0

Metric response

FULL NONATURAL NOBALANCE

Metric response

lo
g(

Er
ro

r)
lo

g(
Er

ro
r)

lo
g(

Er
ro

r)
lo

g(
Er

ro
r)

lo
g(

Er
ro

r)
lo

g(
Er

ro
r)

Figure 4: Analysis of metric prediction error, for different metrics
and variants of our method. The top plots show sorted error distribu-
tions. The bottom row plots show the correlation of metric response
and metric prediction error. All vertical axis are log scale.

Each plot in the first row of Fig. 4 shows the sorted error of our
metric prediction in ascending order. We see that across the entire
range, with the exception of MSE prediction for low errors; the
FULL approach performs better than other variants. This indicates
that the mean is a good characterization of the performance. In
all cases, we noticed a sudden increase in the error that occurs
around 50 % of the population, i. e., the error for the first half of
the population seems to follow a different trend than the second
half. We hypothesize that, these are the patches where reference and
input are (partially) not aligned, which make up roughly 50 % of
the population as well. Unfortunately, there is no way to tell apart
a misaligned patch that is judged by FR metrics as different with
respect to a displaced reference. Hence, large errors are expected
to become undetectable at some error level. The exception is the
regime in MSE where the FULL approach is worse on low errors
and slightly better on high errors, while it performs best on average
in (Tbl. 1). This can be difficult to comprehend due to the log scale
of the vertical axis.

Each plot in the second row in Fig. 4 shows the error of our
prediction on the vertical axis and the metric response on the hor-
izontal axis as a connected scatter plot. We can see that the plots
are in accordance with Tbl. 1: The NONATURAL method which
performs best in predicting high metric responses, has a high error
on patches with small metric response (false positives). Symmetri-
cally, the NOBALANCE method which is the best at predicting low
metric responses, produces high errors on patches with high metric
response (false negatives). FULL method is always a bit worse than
one other method in one region (except at the unique point where
both cross), but on average performs best overall.

4.3. Qualitative results

Example metric outputs Fig. 5 shows an analysis of the response
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Figure 5: Comparing the response to a pair of an image A and its distorted version B (first column). Our response (second column) is
similar to the ground truth (third column). When executed on the clean reference (fourth column), only very few false positives are reported.

of all metrics to two different LFs from the test set. The first column
shows the distorted input A in the top, below the hidden reference
B and below this three insets from both. The second column shows
our predicted response A	B for different metrics: MSE on top,
followed by SSIM and VGG. A false color coding, where cold colors
indicate a low response and warm colors indicate a high response,
is used. The third column shows the GT response for the same. It
is evident that there is a similarity between our prediction and the
ground truth. We slightly err towards conservative, i. e., miss a few
errors. How some of these errors are only false findings, i. e., a
limitation of the metrics, becomes apparent from the user study to
follow.

The last column shows a sanity check where we put the hidden
reference image B into our metric. The hidden reference obviously

does not contain any error, and consequently reporting one is a false
positive. We see, that our image has a responses in areas that are
correct but look like IBR artifacts, but in most areas has no response.
In summary, this indicates that we localize and scale errors to a
hidden reference in images with artifacts, while avoiding to produce
a signal when facing clean images. It might appear that MSE has
less false positives than SSIM or VGG when inspecting the last
column; simply more deep blue, very close to perfect in the first row.
However, such a trend is not supported by the numbers in Tbl. 1 or
the plots in Fig. 4. The true reason for this impression might be that
the SSIM and VGG response simply have a larger receptive field
per-se: MSE is per-pixel while VGG is affected by up to 32× 32
pixels. Even the ground truth response is more dense (less deep
blue). Consequently the metric prediction, in case of error, also
makes spatially more extended, more dense, mistakes.
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Figure 6: Transform-invariance of our approach: When computing the distance between a clean input image A (first column, first row)
and a misaligned reference B (not shown here, 20-px shifted or 20 degrees rotated copy of A), a common metric such as MSE will show a
strong response (first row, second and third columns). Such a response is numerically correct, but far from human assessment, which would be
more similar to our response (first row, fourth and fifth columns). Symmetrically, repeating the experiment on a distorted input, our approach
correctly localizes the distortions around the books (inset) as if the reference had been aligned.

Transformation-invariance Surprisingly, results produced by
our approach can turn out to be better than their own supervision, as
our method is forced to come up with strategies to detect problems
without seeing the reference. This makes it immune to a common
issue of many image metrics: misalignment [KRMS16]. Even a
simple shift in image content will result in many false positives for
classic metrics (Fig. 6). An image that has merely been shifted is
reported to be very different from a reference by all the metrics used
for our supervision; however, it shows less differences in case we
add IBR artifacts to it. In contrast, our method does not care about
transformation, but when IBR artifacts are added, they are detected.
As our proposed method is oblivious to the ground truth, it is not
subject to such a misconception. While not quantifiable, the result is
arguably more similar to human judgment, as indicated by the user
experiment in the next subsection.

4.4. User study

We have conducted a user experiment to validate that our predicted
metric responses spatially correlate with the visibility of artifacts
to human subjects. We quantify the human responses by means of
per-pixel annotations, which are painted on top of images showing
IBR artifacts. Note that no user responses was used for training.

Methods Naïve users were asked to use a binary painting inter-
face to mark errors in a rendered image for each of the six LFs of
our test dataset in an open-ended session that took 15 minutes on
average. We average the binary response into a continuous fraction
(percentage) of users that detected the location of the artifacts.

Analysis Asking N = 10 users, we find the correlation (Pearson
linear correlation R, higher values are better; statements highly
significant as the correlation is computed on a high number of
image pixels) reported in Fig. 7-b. We see that for many scenes
as well as for the average across scenes, our method has a higher
correlation with user annotation than the metric it was supervised
on. We hypothesize, that this is due to the fact that our network had

Ground truth
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User annotation
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Non-aligned

Our prediction

Scene1
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Figure 7: Exemplary user study result (a). Correlation (significant,
p < .001) of MSE/SSIM/VGG and user responses (red) compared to
our predictions of the three metrics (blue) for different scenes and
as an average across scenes to the right (b). We can see that in the
non-aligned conditions, these differences get stronger (c).

learned to become independent of a reference, a similar robustness
that the HVS employs. There is no clear trend on which of our metric
response predictions correlates the most with the user annotations.
The differences between scenes, however, seem more pronounced.

When repeating the experiment with a non-aligned reference
(shifted a mere 20 px to the right), we find the correlations reported
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in Fig. 7-c. We see that our correlation even improves in this con-
dition(our metric shows higher correlations for all metrics across
different scenes), showing we are more robust to alignment issues
when predicting user responses.

Perceptualization Finally, we computed a linear correlation R
by fitting a model xi = a · yi +b, where xi is the user response and
yi is our prediction of the metric response for pixel i. This allows a
“perceptualization” of our metrics response. Fitting multiple mod-
els a,b in a leave-one-out protocol to 5 of our 6 scenes produces
an average error of .05/.04/.02 for MSE/SSIM/VGG respectively,
indicating that this perceptualization generalizes to some extent.

Depth estimation
and IBR

Robot-arm capture

Initial cameras Novel views Adapted cameras

Scene

Error prediction

Figure 8: Proposed pipeline for adaptive LF sampling by bounding
the reconstruction error predicted by our no-reference metric.

4.5. Other architectures

We also explored using other architectures with or without balancing.
A simple solution would be to use a supervised image translation
network such as Pix2Pix [IZZE17] to map from entire IBR images
to the metric response. Unfortunately, training these on our data
converges to a flat response of zero, as artifacts are too rare and
subtle to be picked without the balancing we suggest. Future work
could investigate combining our balancing with other architectures.

4.6. Supplementary materials

Ground-truth responses of all metrics and our predictions for all
input images, for all variants of the algorithm, as well as all user
study annotations can be explored in an interactive web application
in the supplementary materials.

5. Applications

We will now demonstrate two practical applications of a NR-IQM in
light field production. The first is accelerating automated adaptive LF
capture (Sec. 5.1), the second employs our NR-IQM as a feedback
in an interactive depth manipulation system (Sec. 5.2).

5.1. Adaptive light field capturing

Capturing a dense set of input view images results in a high-quality
reconstruction but remains a time-consuming process or may require
a bulky setup. Our main observation is that not all input view images
contribute equally to the reconstruction of novel-view images. Our
metric helps identifying and capturing these.

Images from views dominated by planar diffuse surfaces can

reliably be predicted from images taken from other views showing
this very same surface. Hence, dense capturing from these views is
needed and thus not efficient.

In contrast, occlusions and specularity can be more challenging,
because it must be ensured that each scene element is visible in at
least two camera views (when using multi-view stereo, as we do) to
compute depth. Sparse capturing from these views would sacrifice
the reconstruction quality.

To both of these ends, we propose an adaptive capturing mecha-
nism as it illustrated in Fig. 8 to capture an image for a view only if
it cannot be extrapolated from other views.

5.1.1. Setup

We study adaptive capturing by means of a large-scale translation
stage equipped with a digital camera. The position of the camera can
be controlled with a precision of 80µm in horizontal and 50µm in
vertical direction. This allows for very dense capturing of the scene.
While this takes long to capture, it serves as a unique baseline to our
study where we can compare our prediction of an error to the actual
error present.

5.1.2. Procedure

We first capture a sparse set of images and estimate the depth maps
for each view. Then, we use DIBR to render a set of intermediate-
views and compute the reconstruction error for each rendered view.
All pixels are simply averaged in each view image, producing a sin-
gle scalar value. The capturing grid is then subdivided into smaller
regions where average predicted reconstruction errors is larger than
a given threshold. This process is repeated until a desired quality
is achieved. By this approach, the number of captured views can
be substantially reduced, and we only need to capture images at
locations where reconstruction is poor.

Ground-truth Our prediction

Figure 9: Reconstruction error of intermediate novel views. Left:
Ground truth MSE values, right: Our network MSE prediction.

Predicting the reconstruction error of novel view is the key to
make such an approach work. Classic full-reference image qual-
ity metrics require a dense capture to provide reference images to
compute the error, which is not practical as our goal is to reduce
the number of captured images in the first place. In contrast, our
proposed no-reference metric can measure the error in the novel
view images without providing their reference images, resulting in
an efficient approach.

5.1.3. Evaluation

To evaluate effectiveness of our metric in this application, we simu-
late capturing two LFs, adapted according to the MSE metric.
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Iteration 1 Iteration 5 Iteration 1 Iteration 1Iteration 4 Iteration 5
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Figure 10: Adaptive panoramic light field capturing: The top row shows a grid indicating the camera placement at different iterations. The
second row shows the selected rendered views based on the key frames that are captured. The insets in the third row show the marked patches
from the rendered views in the first iteration and in the iteration that a desired quality is achieved. In the fourth row, we also show our network
predictions for the corresponding patches in each iteration.

Array We captured an array of 7×15 images for the scene shown
in Fig. 8 (left). In Fig. 9 we show the ground truth MSE (left) and
our network prediction (right), where each grid element denotes a
camera position. The dark blue grid elements indicate the camera
positions where actual key frames were captured, while rendering
has been performed for all remaining intermediate positions.

As we can see, the distribution of reconstruction error as predicted
by our metric correlates well with the ground truth. Fig. 8 (right)
shows new camera locations that are required to reduce the true
average reconstruction error below .004.

Panoramic We also demonstrate the potential benefit of our ap-
proach for an efficient panoramic (i. e., one-dimensional, linear)
light field capturing. As it is shown in Fig. 10, depending on the
scene content, not all regions in the scene require equally dense cam-
era placement. Our metric successfully guides the capturing setup
to take more photos in the regions with thin structures, substantial
disocclusions or specularites where accurate reconstruction is highly
challenging. Overall, capturing 76 instead of 720 images – a sparsity
of 10.5 % – reduces the total capture time from 59 minutes to 4.9
minutes, i. e., by 91 %.

5.2. Interactive depth adjustments

Long acquisition times involved in capturing dense light fields make
it a tedious and impractical task for some application fields. One
of such fields is movie production, where the presence of highly
dynamic scenes and time pressure discourages the use of dense light
fields, and in such cases, only sparse light field capture using video
camera arrays is seen as a convenient solution.

Unfortunately, automatic error-free light field reconstruction from

a sparse capture is still an unsolved problem. To this end, there
are ongoing research efforts to address the challenges such as
the estimation of disparity in the presence of homogeneous areas,
repetitive structures, fine-grained objects, or specularities. In such
cases, interactive disparity estimation improvement seems to be the
most promising solution to achieve a high-quality view rendering
[WFY∗11, KK15, LVHDH12, CLD11]. However, this requires de-
tecting possible view rendering artifacts as fast as possible to reduce
the post-processing time. As shown in the right-most image of the
second row in Fig. 10, spotting an artifact is not a trivial task and
sometimes requires carefully scanning the view rendering result.
Our quality estimation metric can significantly simplify this process
by allowing the automatic analysis of several novel rendered views.
By observing the predicted visibility map, which identifies the lo-
cal distortions, the user can quickly spot the problematic regions.
Using a post-production software suite † to perform an interactive
view rendering with only a small subset of cameras allows detect-
ing the captured view responsible for the error. The inspection of
the corresponding disparity map followed by an approach similar
to [WFY∗11, KK15] finally allows fixing the view rendering error.
This is achieved by manual creation of a geometry proxy in 3D
space for objects whose disparity map could not be computed au-
tomatically. The proxy is then used to bound the admissible depth
values for a subsequent disparity estimation.

(top) and the bottom row shows the corresponding patches after
applying our manual disparity refinement.

The results of this procedure are illustrated in Fig. 11. The con-
tained repetitive structures are very challenging for automatic dis-

† https://www.iis.fraunhofer.de/realception
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Figure 11: Interactive depth adjustment. The marked patches are
showing the regions in the rendered view where our method predicts
the MSE

parity estimation and consequently lead to many view rendering
artifacts as clearly indicated by the depicted error map. For solving
these issues, a user has added proxy-based disparity constraints
for the waste basket (and the contained figurine), the grid structure
behind the flower, and the grid structure in the upper right corner
of the image. By these means, a much better view rendering could
be achieved as shown in Fig. 11. Our metric has reduced the time
required to find those reconstruction errors, leaving more time to a
user to correct them.

6. Conclusion

We have demonstrated that with properly adjusted training data (pri-
oritization and natural supervision), a CNN can learn how to predict
the difference of an image to a hidden reference. Our approach is
independent of the metric used and we have shown MSE, SSIM and
VGG prediction. Other metrics such as HDR-VDP-2 [MKRH11] or
the CNN-based metric of Wolski et al. [WGY∗18] would likely be
predictable in a similar fashion.

Such a metric can be applied for several applications. As demon-
strated this includes adaptive light field sampling of complex scenes
and interactive depth editing. Moreover, since in contrast to any
existing non-reference metric, our approach provides a predicted
error map, this opens the potential for many novel applications such
as interactive or automatic view rendering error correction.

In future work, we would like to overcome the limitations of the
paired input, eventually using an adversarial [GPAM∗14] design,
and learn the prediction only from pairs and without the metric, or
only from pairs of undistorted-metric or distorted-metric.
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